Printed P	Page:- 04 Subject Code:- AMICSE0404 Roll. No:					
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA						
	(An Autonomous Institute Affiliated to AKTU, Lucknow)					
	M.Tech (Integrated)					
	SEM: IV - THEORY EXAMINATION (2023 -2024) Subject: Theory of Automata and Formal Languages					
Time: 3	3 Hours Max. Max.	rks: 100				
	Instructions:	2200				
IMP: Ver	erify that you have received the question paper with the correct course, code, bra	nch etc.				
	Question paper comprises of three Sections -A, B, & C. It consists of Multiple Ch	noice				
	ns (MCQ's) & Subjective type questions.					
	num marks for each question are indicated on right -hand side of each question.					
	rate your answers with neat sketches wherever necessary. ne suitable data if necessary.					
	rably, write the answers in sequential order.					
•	eet should be left blank. Any written material after a blank sheet will not be					
evaluated	ed/checked.					
SECTION	ON-A	20				
1. Attemp	npt all parts:-					
1-a.	A regular language over an alphabet ∑ is one that cannot be obtained	1				
	from the basic languages using the operation. (CO1)					
(a)	a) Union					
(b)	b) Concatenation					
(c)						
(d)						
1-b.	Under which of the following operation, NFA is not closed? (CO1)	1				
(a)	a) Negation					
(b)	b) Kleene					
(c)	c) Concatenation					
(d)	d) None of the mentioned					
1-c.	A language is regular if and only if (CO2)	1				
(a)	a) accepted by DFA					
(b)	b) accepted by PDA					
(c)	c) accepted by LBA					
(d)	d) accepted by Turing machine					
	Find the regular expression for language L={set of strings of a's and b's end wit a}. (CO2)	th 1				
(a)	(a) (a+b) * a					

	(1-)	- (- · 1. \\\\-1.	
	(b)	a(a+b)*b	
	(c)	(a*b*)*a	
	(d)	Both option A and C	
1-e.	A grammar that produce more than one parse tree for same sentence is called : (CO3)		1
	(a)	Ambiguous	
	(b)	Unambiguous	
	(c)	Regular	
	(d)	None	
1-f.	P	ush down automata accepts languages. (CO3)	1
	(a)	Type 3	
	(b)	Type 2	
	(c)	Type 1	
	(d)	Type 0	
1-g.	C	ontext Sensitive Grammar can be recognized by: (CO4)	1
	(a)	Deterministic Pushdown Automata	
	(b)	Non- Deterministic Pushdown Automata	
	(c)	Finite State Machine	
	(d)	Linear Bound Automata	
1-h.	A	non deterministic pushdown acceptor is defined bytuples (CO4)	1
	(a)	5	
	(b)	6	
	(c)	8	
	(d)	7	
1-i.	W	which of the following problems is undecidable? (CO5)	1
	(a)	Finiteness problem for FSAs	
	(b)	Membership problem for CFGs	
	(c)	Equivalence problem for FSAs	
	(d)	Ambiguity problem for CFGs	
1-j.	T	he language recognized by Turing machine is: (CO5)	1
	(a)	Context free language	
	(b)	Context sensitive language	
	(c)	Recursively enumerable language	
	(d)	Regular language	
2. Att	empt a	all parts:-	
2.a.	C	onstruct a DFA for language over $\Sigma = \{a, b\}$ where every strings ends with ab. (CO1)	2
2.b.		Vrite application of pumping lemma for regular languages. (CO2)	2

2.c.	Discuss the procedure to eliminate useless symbol from a Context Free Grammar. (CO3)	2
2.d.	Differentiate between DPDA and NPDA. (CO4)	2
2.e.	Explain Universal Turing Machine. (CO5)	2
SECTI	ON-B	30
3. Answ	ver any <u>five</u> of the following:-	
3-a.	Design Finite Automata which accepts the language $L = \{w \in (0,1)^* / \text{ second symbol of } w \text{ is } 0 \text{ and fourth input is } 1\}.$ (CO1)	6
3-b.	Design a DFA to accept string of 0's & 1's when interpreted as binary numbers would be multiple of 3. (CO1)	6
3-c.	Explain Left Linear Grammar and Right Linear Grammar with the help of suitable examples. (CO2)	6
3-d.	Draw NFA with epsilon transition for the R.E. a*(a+b)*(ab*a)*. (CO2)	6
3.e.	Write the procedure and Eliminate left recursion from the following Grammar (CO3) $E \rightarrow E + T/T$ $T \rightarrow T^*F/F$ $F \rightarrow (E)/id$	6
3.f.	Design a PDA for the language $L = \{ w c w^r w \in \{ a, b \}^* \}$. (CO4)	6
3.g.	Define Recursive language and Recursively enumerable languages? (CO5)	6
SECTION	ON-C	50
4. Answ	ver any <u>one</u> of the following:-	
4-a.	Define moore and melay machine Construct a Moore machine that determines whether an input string contains an even or odd number of 1's. The machine should give 1 as output if an even number of 1's are in the string and 0 otherwise. (CO1)	10
4-b.	Explain Chomsky Classification of Grammars in detail. (CO1)	10
5. Answ	ver any <u>one</u> of the following:-	
5-a.	Write regular expression for the following Languages over ∑ = {x, y} that contains: (CO2) (i) Strings where number of x's are even (ii) Strings with length at least 5. (iii) Strings where 4 th symbol from the end is y. (iv) Strings where there are no two consecutive x's. (v) Strings with length at most two.	10
5-b.	Discuss the tuple with Production rule of Regular Grammar. What are the rules for constructing Finite Automata from Regular Grammar. Construct a Finite Automata to accept the language generated by the following grammar. (CO2) S> 01A A> 10B	10

B ---> 0A / 11 6. Answer any <u>one</u> of the following:-

6-a. Write CFG for language $L = \{0^n 1^m 2^p\}$ where $n \le m$ or $m \le p$. (CO3)

6-b. Consider the grammar (CO3)

 $S \longrightarrow aB / bA$

 $A \longrightarrow aS / bAA / a$

 $B \longrightarrow bS / aBB / b$

For the string aaabbabbba, find

- (i) The left most derivation and left most derivation tree
- (ii) The right most derivation and right most derivation tree
- 7. Answer any one of the following:-
- 7-a. Describe the Definition of Pushdown Automata. Is PDA more powerful than Finite Automata? if Yes than why? also Design PDA for Language $L = \{a^{m+n}b^mc^n \mid m, n > 1\}$ (CO4)
- 7-b. Construct a deterministic pda accepting $L=\{w \in \{a,b\}^* \text{ the number of a's } 10 \text{ in w equal number of b's in w} \}$ by final state. (CO4)
- 8. Answer any one of the following:-
- 8-a. Explain any two of the following: (CO5)
 - (i) Universal Turing Machine
 - (ii) Recursively Enumerable Language
 - (iii) Halting Problem
 - (iv) Post's Correspondence Problem
- 8-b. Design a Turing machine which recognizes the language consisting of all strings of 0s whose length is a power of 2. i.e., it decides the language $L = \{0^n 2^n \mid n > = 0\}$. (CO5)

Page 4 of 4